PLSSVM - Parallel Least Squares Support Vector Machine  2.0.0
A Least Squares Support Vector Machine implementation using different backends.
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 Cplssvm::detail::cartesian_type_product< S, T >
 Cplssvm::detail::cartesian_type_product< std::tuple< FirstTupleType, FirstTupleRemainingTypes... >, std::tuple< SecondTupleTypes... > >Calculate the cartesian product of the types in two tuples and return a new tuple with the corresponding real_type_label_type_combination types
 Cplssvm::detail::cartesian_type_product< std::tuple<>, std::tuple< SecondTupleTypes... > >
 Cplssvm::opencl::detail::command_queueRAII wrapper class around a cl_command_queue
 Cplssvm::detail::concat_tuple_types< S, T >
 Cplssvm::detail::concat_tuple_types< std::tuple< FirstTupleTypes... >, std::tuple< SecondTupleTypes... > >Concatenate the types of the two tuples to a new tuple type
 Cplssvm::opencl::detail::contextRAII wrapper class around a cl_context
 Cplssvm::csvmBase class for all C-SVM backends
 Cdetail::csvm_backend_exists
 Cdetail::csvm_to_backend_type
 Cplssvm::data_set< T, U >Encapsulate all necessary data that is needed for training or predicting using an SVM
 Cplssvm::data_set< real_type, label_type >
 Cplssvm::default_init< T >This class denotes an explicit default value initialization used to distinguish between the default value or user provided initialization in the default_value class
 Cplssvm::default_init< value_type >
 Cplssvm::default_value< T >This class encapsulates a value that may be a default value or not
 Cplssvm::default_value< double >
 Cplssvm::default_value< int >
 Cplssvm::default_value< kernel_function_type >
 Cplssvm::default_value< real_type >
 Cplssvm::default_value< std::size_t >
 Cplssvm::sycl::detail::device_kernel_predict_polynomial< T >Predicts the labels for data points using the polynomial kernel function
 Cplssvm::sycl::detail::device_kernel_predict_rbf< T >Predicts the labels for data points using the radial basis functions kernel function
 Cplssvm::sycl::detail::device_kernel_q_linear< T >Functor to calculate the q vector using the linear C-SVM kernel
 Cplssvm::sycl::detail::device_kernel_q_polynomial< T >Functor to calculate the q vector using the polynomial C-SVM kernel
 Cplssvm::sycl::detail::device_kernel_q_rbf< T >Functor to calculate the q vector using the radial basis functions C-SVM kernel
 Cplssvm::sycl::detail::device_kernel_w_linear< T >Calculate the w vector to speed up the prediction of the labels for data points using the linear kernel function
 Cstd::disjunction
 Cplssvm::opencl::detail::error_codeClass wrapping an OpenCL error code
 Cplssvm::detail::execution_rangeClass specifying a backend independent execution range
 Cplssvm::data_set< T, U >::scaling::factorsThe calculated or read feature-wise scaling factors
 Cstd::false_type
 Cplssvm::detail::io::file_readerThe plssvm::detail::file_reader class is responsible for reading a file and splitting it into its lines
 Cplssvm::detail::gpu_device_ptr< T, queue_t, device_pointer_t >Small wrapper class around a GPU device pointer together with commonly used device functions for all GPU backends to reduce code duplication
 Cplssvm::detail::gpu_device_ptr< T, const command_queue *, cl_mem >
 Cplssvm::detail::gpu_device_ptr< T, int >
 Cplssvm::detail::gpu_device_ptr< T, queue >
 Cstd::hash< plssvm::default_value< T > >Hashing struct specialization in the std namespace for a default_value
 Cplssvm::sycl::detail::hierarchical_device_kernel_linear< T >Calculates the C-SVM kernel using the hierarchical formulation and the linear kernel function
 Cplssvm::sycl::detail::hierarchical_device_kernel_polynomial< T >Calculates the C-SVM kernel using the hierarchical formulation and the polynomial kernel function
 Cplssvm::sycl::detail::hierarchical_device_kernel_rbf< T >Calculates the C-SVM kernel using the hierarchical formulation and the radial basis functions kernel function
 Cdetail::is_default_value
 Cplssvm::opencl::detail::kernelRAII wrapper class around a cl_kernel
 Cplssvm::data_set< T, U >::label_mapperImplements all necessary functionality to map arbitrary labels to labels usable by the C-SVMs
 Cplssvm::model< T, U >Implements a class encapsulating the result of a call to the SVM fit function. A model is used to predict the labels of a new data set
 Cplssvm::sycl::detail::nd_range_device_kernel_linear< T >Calculates the C-SVM kernel using the nd_range formulation and the linear kernel function
 Cplssvm::sycl::detail::nd_range_device_kernel_polynomial< T >Calculates the C-SVM kernel using the nd_range formulation and the polynomial kernel function
 Cplssvm::sycl::detail::nd_range_device_kernel_rbf< T >Calculates the C-SVM kernel using the nd_range formulation and the radial basis functions kernel function
 Cplssvm::detail::parameter< T >Class for encapsulating all important C-SVM parameters
 Cplssvm::detail::parameter< double >
 Cplssvm::detail::cmd::parser_predictClass for encapsulating all necessary parameters for prediction; normally provided through command line arguments
 Cplssvm::detail::cmd::parser_scaleClass for encapsulating all necessary parameters for scaling a data set; normally provided through command line arguments
 Cplssvm::detail::cmd::parser_trainClass for encapsulating all necessary parameters for training; normally provided through command line arguments
 Cplssvm::detail::performance_trackerStore the tracked information during calls to plssvm-train, plssvm-predict, and plssvm-scale
 Cplssvm::dpcpp::detail::queuePImpl class to hide the SYCL queue class from the public interface (and, therefore, the "sycl/sycl.hpp" header)
 Cplssvm::hipsycl::detail::queuePImpl class to hide the SYCL queue class from the public interface (and, therefore, the "sycl/sycl.hpp" header)
 Cplssvm::dpcpp::detail::queue::queue_implThe PImpl implementation struct encapsulating a single SYCL queue
 Cplssvm::hipsycl::detail::queue::queue_implThe PImpl implementation struct encapsulating a single SYCL queue
 Cplssvm::detail::real_type_label_type_combination< T, U >Encapsulates a combination of a used real_type (float or double) and label_type (an arithmetic type or std::string)
 Cstd::runtime_error
 Cplssvm::data_set< T, U >::scalingImplements all necessary data and functions needed for scaling a plssvm::data_set to an user-defined range
 Cplssvm::detail::sha256A hashing struct used for sha256 hashing
 Cplssvm::source_locationThe plssvm::source_location class represents certain information about the source code, such as file names, line numbers, or function names
 Cplssvm::detail::tracking_entry< T >A single tracking entry containing a specific category, a unique name, and the actual value to be tracked
 Cplssvm::operators::transposed< T >Wrapper struct for overloading the dot product operator
 Cstd::true_type
 Cplssvm::detail::type_list_contains< T, Tuple >Checks whether the type T is present in the Tuple