Defines the functions used for prediction for the C-SVM using the OpenCL backend.
More...
|
__kernel void | device_kernel_w_linear (__global real_type *w_d, __global real_type *data_d, __global real_type *data_last_d, __global real_type *alpha_d, const kernel_index_type num_data_points, const kernel_index_type num_features) |
| Calculate the w vector to speed up the prediction of the labels for data points using the linear kernel function. More...
|
|
__kernel void | device_kernel_predict_polynomial (__global real_type *out_d, __global const real_type *data_d, __global const real_type *data_last_d, __global const real_type *alpha_d, const kernel_index_type num_data_points, __global const real_type *points, const kernel_index_type num_predict_points, const kernel_index_type num_features, const int degree, const real_type gamma, const real_type coef0) |
| Predicts the labels for data points using the polynomial kernel function. More...
|
|
__kernel void | device_kernel_predict_rbf (__global real_type *out_d, __global const real_type *data_d, __global const real_type *data_last_d, __global const real_type *alpha_d, const kernel_index_type num_data_points, __global const real_type *points, const kernel_index_type num_predict_points, const kernel_index_type num_features, const real_type gamma) |
| Predicts the labels for data points using the radial basis functions kernel function. More...
|
|
Defines the functions used for prediction for the C-SVM using the OpenCL backend.
- Author
- Alexander Van Craen
-
Marcel Breyer
- Copyright
- 2018-today The PLSSVM project - All Rights Reserved
- License
- This file is part of the PLSSVM project which is released under the MIT license. See the LICENSE.md file in the project root for full license information.
◆ device_kernel_w_linear()
__kernel void device_kernel_w_linear |
( |
__global real_type * |
w_d, |
|
|
__global real_type * |
data_d, |
|
|
__global real_type * |
data_last_d, |
|
|
__global real_type * |
alpha_d, |
|
|
const kernel_index_type |
num_data_points, |
|
|
const kernel_index_type |
num_features |
|
) |
| |
Calculate the w
vector to speed up the prediction of the labels for data points using the linear kernel function.
Supports multi-GPU execution.
- Template Parameters
-
real_type | the type of the data |
- Parameters
-
[out] | w_d | the w vector to assemble |
[in] | data_d | the one-dimension support vector matrix |
[in] | data_last_d | the last row of the support vector matrix |
[in] | alpha_d | the previously calculated weight for each data point |
[in] | num_data_points | the total number of support vectors |
[in] | num_features | the number of features per support vector |
◆ device_kernel_predict_polynomial()
__kernel void device_kernel_predict_polynomial |
( |
__global real_type * |
out_d, |
|
|
__global const real_type * |
data_d, |
|
|
__global const real_type * |
data_last_d, |
|
|
__global const real_type * |
alpha_d, |
|
|
const kernel_index_type |
num_data_points, |
|
|
__global const real_type * |
points, |
|
|
const kernel_index_type |
num_predict_points, |
|
|
const kernel_index_type |
num_features, |
|
|
const int |
degree, |
|
|
const real_type |
gamma, |
|
|
const real_type |
coef0 |
|
) |
| |
Predicts the labels for data points using the polynomial kernel function.
Currently only single GPU execution is supported.
- Template Parameters
-
real_type | the type of the data |
- Parameters
-
[out] | out_d | the calculated predictions |
[in] | data_d | the one-dimension support vector matrix |
[in] | data_last_d | the last row of the support vector matrix |
[in] | alpha_d | the previously calculated weight for each data point |
[in] | num_data_points | the total number of support vectors |
[in] | points | the data points to predict |
[in] | num_predict_points | the total number of data points to predict |
[in] | num_features | the number of features per support vector and point to predict |
[in] | degree | the degree parameter used in the polynomial kernel function |
[in] | gamma | the gamma parameter used in the polynomial kernel function |
[in] | coef0 | the coef0 parameter used in the polynomial kernel function |
◆ device_kernel_predict_rbf()
__kernel void device_kernel_predict_rbf |
( |
__global real_type * |
out_d, |
|
|
__global const real_type * |
data_d, |
|
|
__global const real_type * |
data_last_d, |
|
|
__global const real_type * |
alpha_d, |
|
|
const kernel_index_type |
num_data_points, |
|
|
__global const real_type * |
points, |
|
|
const kernel_index_type |
num_predict_points, |
|
|
const kernel_index_type |
num_features, |
|
|
const real_type |
gamma |
|
) |
| |
Predicts the labels for data points using the radial basis functions kernel function.
Currently only single GPU execution is supported.
- Template Parameters
-
real_type | the type of the data |
- Parameters
-
[out] | out_d | the calculated predictions |
[in] | data_d | the one-dimension support vector matrix |
[in] | data_last_d | the last row of the support vector matrix |
[in] | alpha_d | the previously calculated weight for each data point |
[in] | num_data_points | the total number of support vectors |
[in] | points | the data points to predict |
[in] | num_predict_points | the total number of data points to predict |
[in] | num_features | the number of features per support vector and point to predict |
[in] | gamma | the gamma parameter used in the rbf kernel function |